96. The Novel Adamantane Isomer 2, 5-Trimethylenenorbornane (Tricyclo-[5.3.0.0^{3,9}]decane, 4-Homotwistbrendane)

by Hans-Ruedi Känel, Hans-Georg Capraro and Camille Ganter

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16, CH-8092 Zürich

(18.11.82)

Summary

A synthesis of the novel $C_{10}H_{16}$ hydrocarbon 2,5-trimethylenenorbornane (tricyclo [5.3.0.0^{3,9}]decane, 1), one of the 19 members of the 'adamantaneland', and its *Lewis*-acid-catalyzed rearrangement is described.

2,5-Trimethylenenorbornane $(1)^1$) belongs to the set of 19 isomeric tricyclic $C_{10}H_{16}$ -compounds, known as 'adamantanland' [2]. We describe here a synthesis and its *Lewis*-acid-catalyzed isomerization of the hitherto unknown hydrocarbon 1.

Synthesis of 1. – The easily available *p*-toluenesulfonate 3 [3] of protoadamant-4-en-10*endo*-ol (2) [4] was used as suitable starting material. Solvolysis of 3 in l_N NaOH/THF 3:1 yielded after 3 weeks at 85° a mixture of five alcohols, which were separated by column chromatography: 11% of 2 (corresponding to actual starting material 3), 1.5% of its epimeric *exo*-alcohol 4 [4] [5], 68% of 5, 10-didehydroproto-

¹) Tricyclo[5.3.0.0^{3,9}]decane (a), 4-homotwistbrendane (b), cristane [1]. In the present communication the numbering of the C-atoms follows the trimethylenenorbornane nomenclature. The correct IUPAC names are added in parentheses in the experimental part.

© 1982 Schweizerische Chemische Gesellschaft

adamant- $4^{C(7)}$ -ol²) (5)³) [3–5], and 17% of the desired alcohol 6 along with 2.5% of its epimer 7.

Scheme 3 summarizes probable mechanistic pathways from 3 to 2 and 4-7. The alcohols 2 (pathway A) and 4 (pathway B) are directly derived from the primarily formed protoadamant-4-en-10-yl ion (c), whereas 5 (pathway C) is the result of C(4), C(5) double bond participation in c. Attack of solvent at the allylic ion d, obtained by 1,2-carbon migration of the C(6), C(7)-bond in c, leads to the rearranged alcohols 6 (pathway D) and 7 (pathway E)⁴).

Conversion of the unsaturated alcohol 6 to compound 1 was achieved by the following routes. Ketone 11 or alkene 12 were used as key intermediates. The

⁴) Neither base- nor acid-catalyzed solvolysis of protoadamantan-10endo-yl p-toluenesulfonate (8), the saturated analogue of 3, yielded rearranged 2,5-trimethylenenorbornanols, but only endo- (9) [6] and exo-protoadamantan-10-ol (10) [6] as the primary products.

²) In protoadamantanes and in 2,5-trimethylenenorbornanes the indices indicate the C-atom towards which a substituent is orientated.

³) Compound 5 can easily be converted to 4 in refluxing aqueous acetone in the presence of perchloric acid.

a) H₂, 10% Pd/C, AcOEt; b) H₂, *Raney*-nickel, MeOH; c) HN = NH (from potassium azodicarboxylate [7]), MeOH; d) Ac₂O, Py; e) Pyridinium dichromate, pyridinium trifluoracetate, CH₂Cl₂ [8]; f) CrO₃ · Py, CH₂Cl₂; g) H₂, 10% Pd/C, AcOEt; h) H₂N-NH₂, KOH, glycol, 110-180°; i) AcCl, Et₃N, Et₂O; j) Li/NH₃, Et₂O, -78° ; k) H₂, 5% Pd/CaCO₃, pentane.

former was prepared in three independent ways: a) in quantitative yield directly by treatment of **6** with hydrogen in the presence of Pd/C; b) reduction of the allylic alcohol **6** to the saturated analogue **13**, also characterized as its acetate **14**, proceeded either by hydrogenation in the presence of *Raney*-nickel (quant.) or by diimide reduction (68%) and was followed by oxidation to **11** (91%)⁵); c) *Collins* oxidation

⁵) Reductions of the ketone 11 in most cases led to a mixture of the two epimeric alcohols 13 and 16 in a proportion depending on the conditions. The results are summarized in the *Table*.

Table. Reduction of ketone 11

Reaction conditions	Isolated yield	Composition 13 16
BH ₃ · THF, THF, 1 h, RT.	89%	10 : 1
LiA1H ₄ , Et ₂ O, 1 h, RT.	83%	6:1
Na, toluene, i-C ₃ H ₇ OH, l day, reflux	95% ^a)	1 : 10
LiA1H(O- t -C ₄ H ₉) ₃ , THF, 19 h, reflux	no reaction	
a) Yield with respect to converted starting mater	ial; isolated yield: 66% 13 + 16 a	nd 30% 11.

of 6 led to the a,β -unsaturated ketone 15 (69%), which on hydrogenation gave quantitatively ketone 11. *Wolff-Kishner* reduction of 11 yielded (65%) 2,5-trimethylenenorbornane (1). The other access to 1 was by acetylation of 6 (93%), reduction of the allylic acetate 17 with lithium in liquid ammonia to the alkene 12 (50%), and hydrogenation of 12 to the hydrocarbon 1 (93%).

In accordance with the symmetry of 1, its ¹³C-NMR. spectrum shows only 6 signals: 19.73 (t, C(2')), 26.95 (t, C(1') and C(3')), 33.26 (d, C(2) and C(5)), 34.10 (t, C(3) and C(6)), 42.15 (d, C(1) and C(4)), 43.69 (t, C(7)).

Adamantane rearrangement of 1. – Treatment of 1 with aluminum bromide as catalyst (molar ratio approx. 5:1) in carbon disulfide at -70° for 5 min yielded protoadamantane (18) and adamantane (19) in the ratio of 1:4.5 as the sole products. This result is in agreement with the predictions for the most likely pathway for the rearrangement of 1 to adamantane (19) [2b].

Financial support by the Schweizerischer Nationalfonds zur Förderung wissenschaftlicher Forschung und Ciba-Geigy AG, Basel, is gratefully acknowledged.

Analytical and special data¹). - General. Melting points (m.p.) were determined in sealed capillary tubes in an oil bath (Büchi 510 apparatus) and are uncorrected. The UV. spectrum was measured in pentane on a Cary 14 spectrophotometer. The absorption maximum λ_{max} is given in nm, the ε -value added in parentheses. IR. spectra were recorded in CCl₄ on a Perkin-Elmer 297 spectrophotometer, bands are given in cm⁻¹. ¹H-NMR. spectra (CDCl₃) were measured on a Varian HA-100 or Bruker WM-300 and ¹³C-NMR. spectra (25.5 MHz) on a Varian XL-100 using CDCl₃ as solvent. Chemical shifts are given in pm relative to TMS as internal standard; J=spin-spin coupling constant (Hz), w¹/₂ = half width at half height (Hz). Mass spectra (MS.) were performed on a Hitachi-Perkin-Elmer RMU-6M instrument at 70 eV ionizing electron energy, source temperature 180°, inlet temperature 200°. The most important ions are listed as m/z values with relative intensities (% of base peak) in parenthesis.

2,5-Trimethylenenorbornane (tricyclo[5.3.0.0^{3,9}]decane, 1). M.p. 146-149°. – IR.: 1469m, 1452w, 1326w, 1301w, 1152w, 1010w, 948w, 847w. – ¹H-NMR. (300 MHz): 1.31 ($d \times d \times d \times d$, J(gem)=13, J(2,3endo) and J(5,6endo), resp. =9, J(3endo, 4) and J(1,6endo), resp. =3 or 1.5, J(3endo, $7^{C(5)}$) and J(6endo, $7^{C(3)}$), resp. =1.5 or 3, H_{endo} -C(3) and H_{endo} -C(6)); 1.41 ($m, w^{1/2} \approx 5$, 2 H-C(7)); 1.57 (d, J(vic)=12, $w^{1/2}$ each ≈ 5 , 2 H-C(2')); 1.6-1.85 (m, H_{exo} -C(3), H_{exo} -C(6), 2 H-C(1') and 2 H-C(3')); 2.1 ($m, w^{1/2} \approx 25$, H-C(2) and H-C(5)); 2.15 ($m, w^{1/2} \approx 8$, H-C(1) and H-C(4)). - ¹³C-NMR.: 19.73 (t, C(2')); 26.95 (t, C(1') and C(3')); 33.26 (d, C(2) and C(5)); 34.10 (t, C(3) and C(6)); 42.15 (d, C(1) and C(4)); 43.69 (t, C(7)). - MS.: 136 (32, M^+ , C₁₀H₁₆), 121 (47), 107 (35), 93 (81), 80 (100), 77 (25), 67 (87), 53 (17), 41 (38), 27 (15).

2, 5-Trimethylenenorborn-2'-en-1'^{C(1)}-ol (tricyclo[5.3.0.0^{3,9}]dec-5-en-4^{C(9)}-ol, 6). - IR.: 3625m, 3400m br., 3030m, 1634w, 1467m, 1392m, 1321w, 1307w, 1296w, 1221w, 1036s, 1026s, 1011m, 973m, 962m, 943w, 877m, 846w, 715w, 679w. - ¹H-NMR. (100 MHz): 1.1-2.0 (m, 2H-C(3), 2H-C(6) and 2H-C(7)); 1.65 (s, HO^{C(1)}-C(1')); 2.0- 2.8 (m, H-C(1), H-C(2), H-C(4) and H-C(5)); 4.50 (d×d, $J(2,1')\approx 6$, J(1',2')= 6, $H^{C(3)}-C(1')$; 5.62 (d×d, J(2',3')= 10, J(1',2')= 6, H-C(2')); 6.21 (d×d, J(2',3')= 10, J(5,3')= 8, H-C(3')). - MS.: 150 (8, M^+ , C₁₀H₁₄O), 132 (10), 117 (24), 109 (28), 104 (14), 96 (16), 91 (36), 83 (100), 79 (40), 70 (10), 67 (39), 55 (15), 41 (17), 39 (19), 27 (11).

2, 5-Trimethylenenorbornan-l'-one (tricyclo[5.3.0.0^{3,9}]decan-4-one, **11**). M.p. 143-147°. - IR.: 1700s, 1475m, 1460m, 1416w, 1348w, 1319w, 1314w, 1297w, 1227m, 1198w, 1136m, 1102w, 1085w, 1011w,

1000w, 967m, 941m, 916w, 882w, 842w. - ¹H-NMR. (100 MHz): 1.1-1.75 (m, 5H); 1.75-2.2 (m, 3H); 2.2-2.9 (m, H-C(1), H-C(2), H-C(4), H-C(5) and 2H-C(2')). - MS.: 150 (26, M^+ , $C_{10}H_{14}O$), 132 (3), 122 (6), 108 (9), 96 (18), 79 (35), 66 (100), 55 (16), 41 (18), 28 (48).

2,5-Trimethylenenorborn-1'-ene (tricyclo [5.3.0.0^{3,9}]dec-4-ene, **12**). M.p. 115°. - 1R.: 3015m, 2830m, 1627w, 1463m, 1428w, 1380w, 1312w, 1301m, 1259w, 1248w, 1201m, 1185m, 1102w, 1082w, 1051w, 1025w, 1013m, 984w, 945w, 928w, 909w, 850m, 676s. - ¹H-NMR. (300 MHz): 1.30 ($d \times d \times d \times d$, J(gem) = 11, J(5,6endo) = 9, J(1,6endo) = 2 or 1, $J(6endo, 7^{C(2)}) = 1$ or 2, H_{endo} -C(6)); 1.4-1.8 (m, H_{exo} -C(6), 2 H-C(3) and 2 H-C(7)); 2.13 (m, $wl_2^{l} \approx 18$, H-C(5)); 2.15-2.3 (m, H-C(4) and 2H-C(3')); 2.3-2.4 (m, H-C(1) and H-C(2)); 5.46 ($d \times d \times d \times d$, J(1',2') = 10, $J(2',3'^{C(6)}) = 6$, $J(2',3'^{C(4)}) = 2.5$, J(2,2') = 1, H-C(2')); 5.93 ($d \times d \times d$, J(1',2') = 10, $J(2',3'^{C(6)}) = 6$, $J(2',3'^{C(4)}) = 2.5$, J(2,2') = 1, H-C(2')); 5.93 ($d \times d \times d$, J(1',2') = 10, J(2,1') = 7, J(1',3') = 2.5, H-C(1')). - MS.: 134 (42, M^+ , $C_{10}H_{14}$), 119 (22), 106 (15), 105 (21), 93 (25), 92 (55), 91 (55), 80 (43), 79 (45), 78 (17), 77 (27), 68 (9), 67 (100), 66 (30), 65 (14), 53 (8), 51 (9), 41 (19), 39 (21), 28 (16).

2,5-Trimethylenenorbornan- $1'^{C(1)}$ -ol (tricyclo[5.3.0.0^{3,9}]decan- $4^{C(9)}$ -ol, **13**). M.p. 185-186°. - IR.: 3625*m*, 3450*w* br., 1477*m*, 1464*w*, 1366*w*, 1259*w*, 1201*w*, 1136*w*, 1067*w*, 1038*s*, 1018*s*, 969*m*, 948*m*, 940*m*, 918*w*, 862*w*, 613*w*. - ¹H-NMR. (300 MHz): 1.2-1.45 (*m*, 5H); 1.49 (*s*, HO^{C(1)}-C(1')); 1.55-1.8 (*m*, 3H); 1.87 (*d*, J = 12, $w_{2}^{1/2}$ each ≈ 5 , 1H); 2.1-2.25 and 2.39 (2*m*, 3H and 1H ($w_{2}^{1/2} \approx 10$), H-C(1), H-C(2), H-C(4) and H-C(5)); 2.31 ($d \times d \times d$, J(gem) = 13, J(1', 2') = 10, J(2', 3') = 6.5, H-C(2')); 4.23 ($d \times d \times d$, J(1', 2') = 10, J = 5, J = 4, H^{C(3)}-C(1')). - MS.: 152 (7, M^{+} , C₁₀H₁₆O), 134 (31), 119 (21), 109 (11), 108 (60), 106 (20), 105 (19), 96 (46), 95 (63), 94 (11), 93 (53), 92 (38), 91 (40), 84 (10), 83 (20), 81 (19), 80 (56), 79 (61), 78 (15), 77 (27), 70 (14), 68 (14), 67 (81), 66 (100), 65 (12), 57 (16), 55 (22), 54 (10), 53 (15), 43 (10), 41 (43), 39 (30), 29 (13), 28 (23).

2, 5-Trimethylenenorbornan-1'^{C(1)}-yl acetate (tricyclo[5.3.0.0^{3,9}]decan-4^{C(9)}-yl acetate, **14**). M.p. 37°. - IR.: 1734s, 1476w, 1465w, 1376w, 1364m, 1308w, 1290w, 1246s, 1202w, 1180w, 1146w, 1034w, 1015m, 984m, 967m, 946w, 919w, 897w. - ¹H-NMR. (100 MHz): 1.1-1.5 and 1.5-1.95 (2m, 5H and 4H); 1.99 (s, H₃COO^{C(1)}-C(1')); 2.05-2.45 (m, H-C(1), H-C(2), H-C(4), H-C(5) and H-C(2')); 5.15 (m, $w_{1/2}^{1} \approx 20$, H^{C(3)}-C(1')). - MS.: 194 (0.2, M⁺, C₁₂H₁₈O₂), 152 (12), 135 (17), 134 (89), 119 (37), 107 (10), 106 (26), 105 (28), 95 (11), 93 (50), 92 (60), 91 (42), 81 (17), 80 (41), 79 (37), 78 (17), 77 (16), 67 (38), 66 (32), 55 (10), 53 (78), 43 (100), 41 (23), 39 (14).

2,5-Trimethylenenorborn-2'-en-1'-one (tricyclo[5.3.0. 0,9]dec-5-en-4-one, **15**). M.p. 63-65°. -UV.: 231 (7400). - IR.: 3030m, 1676s, 1604w, 1467m, 1450w, 1376m, 1310w, 1304m, 1284m, 1238m, 1161w, 1154w, 1139m, 1099w, 1072w, 1006w, 977w, 965w, 957w, 936w, 893m, 843m, 659m. - ¹H-NMR. (100 MHz): 1.23 (d, J(gem)=12, $w_{2}^{1/2}$ each ≈ 6 , H_{endo} -C(3)); 1.3-1.8 (m, $w_{2}^{1/2} \approx 7$, 2 H-C(6) and 2 H-C(7)); 1.92 (d×d, J(gem)=12, J(2,3exo)=10, $w_{2}^{1/2}$ each ≈ 5 , H_{exo} -C(3)); 2.42 and 2.56 (2m, $w_{2}^{1/2} \approx 11$ and 12, H-C(1) and H-C(4)); 2.75-3.2 (m, H-C(2) and H-C(5)); 5.95 (d×d×d, J(2',3')=10, J(2,2')=2 or 1, J(5,2')=1 or 2, H-C(2')); 7.08 (d×d, J(2',3')=10, J(5,3')=8, H-C(3')). - MS.: 148 (63, M^{+} , C₁₀H₁₂O), 133 (9), 120 (33), 105 (17), 91 (43), 81 (100), 66 (70), 53 (34), 39 (30), 27 (21).

2, 5-Trimethylenenorbornan-1^{(C(3)}-ol (tricyclo[5.3.0.0^{3,9}]decan-4^{C(2)}-ol, **16**). M.p. 149–152°. – IR.: 3620m, 3400w br., 1473m, 1461m, 1360w, 1315w, 1305w, 1239w, 1201w, 1166w, 1155w, 1068w, 1026s, 1014m, 994s, 968m, 956s, 943w, 914w, 871w, 847w. – ¹H-NMR. (300 MHz): 1.15–1.55 (m, 5H); 1.38 (s, HO^{C(3)}–C(1')); 1.64 (m, w¹/₂ ≈ 30, H–C(2')); 1.7–1.9 (m, 3H); 2.0–2.15 and 2.15–2.35 (2m, 2H and 3H, H–C(1), H–C(2), H–C(4), H–C(5) and H–C(2')); 4.25 (d×d, J=8, J=6, H^{C(1)}–C(1')). – MS.: 152 (6, M⁺, C₁₀H₁₆O), 134 (14), 119 (14), 109 (11), 108 (56), 106 (16), 105 (13), 96 (43), 95 (63), 94 (10), 93 (45), 92 (23), 91 (29), 83 (18), 81 (15), 80 (46), 79 (50), 78 (11), 77 (20), 70 (10), 68 (12), 67 (67), 66 (100), 57 (14), 55 (16), 53 (12), 41 (34), 39 (29), 29 (10), 28 (13).

2, 5-Trimethylenenorborn-2'-en-1'^{C(1)}-yl acetate (tricyclo[5.3.0.0^{3,9}]dec-5-en-4^{C(9)}-yl acetate, **17**). - IR.: 3030w, 1735s, 1471m, 1371m, 1308w, 1296w, 1242s, 1018m, 992w, 962m, 921w, 887w, 865w. - ¹H-NMR. (100 MHz): 1.1-1.9 (m, 2H-C(3), 2H-C(6) and 2H-C(7)); 2.07 (s, H₃CCOO^{C(1)}--C(1')); 2.05-2.75 (m, H-C(1), H-C(2), H-C(4) and H-C(5)); 5.49 (d×d, J(2,1')≈6, J(1'.2')=6, H^{C(3)}-C(1')); 5.62 (d×d, J(2',3')=10, J(1'.2')=6, H-C(2')); 6.27 (d×d, J(2',3')=10, J(5.3')=8, H-C(3')). - MS.: 192 (8, M^+ , $C_{12}H_{16}O_2$), 150 (31), 132 (79), 117 (88), 109 (10), 104 (40), 91 (79), 83 (49), 79 (32), 77 (18), 67 (30), 54 (21), 43 (100), 39 (21), 27 (11).

We thank for their assistance: Miss B. Brandenberg and Mr. K. Hiltbrunner (NMR.), Mrs. L. Golgowsky and Prof. J. Seibl (MS.), of our analytical department.

REFERENCES

- [1] J.G. Henkel & L.A. Spurlock, J. Am. Chem. Soc. 95, 8339 (1973).
- [2] a) H.W. Whitlock, jr. & M.W. Siefken, J. Am. Chem. Soc. 90, 4929 (1968); b) E.M. Engler, M. Farcasiu, A. Sevin, J.M. Cense & P.v.R. Schleyer, J. Am. Chem. Soc. 95, 5769 (1973); see also R.C. Fort, jr., 'Adamantanes. The Chemistry of Diamond Molecules', M. Dekker, Inc., New York, N.Y. 1976.
- [3] F.J. Jäggi, P. Buchs & C. Ganter, Helv. Chim. Acta 63, 872 (1980).
- [4] H.-G. Capraro & C. Ganter, Helv. Chim. Acta 59, 97 (1976).
- [5] H.-G. Capraro & C. Ganter, Helv. Chim. Acta 63, 1347 (1980).
- [6] M. Tichý, L. Kniežo & J. Hapala, Tetrahedron Lett. 1972, 699; iidem, Collect. Czech. Chem. Commun. 40, 3862 (1975).
- [7] H. C. Brown, J. H. Kawakami & K.T. Liu, J. Am. Chem. Soc. 95, 2209 (1973); W.C. Baird, jr., B. Franzus & J. H. Surridge, ibid. 89, 410 (1967).
- [8] E.J. Corey & G. Schmidt, Tetrahedron Lett. 1979, 399.